所谓的事实表和维度表技术,指的就是如何和构造一张事实表和维度表,是的事实表和维度表,可以涵盖现在目前的需要和方便后续下游数据应用的开发。 事实表,就是一个事实的集合。事实来自业务过程的度量,基本上以数量值表示。事实表行对应一个事实,一个事实对应一个物理可以观察的事件,例如,再零售事件中,销售数量与总额是数据事实,与销售事件不相关的度量不可以放在同一个事实表里面,如员工的工资。 事实表是实际发生的度量,对应的,这些度量我们可以分为三中类型:可加、半可加、不可加。可加性度量可以按照与事实表关联的任意维度汇总。半可加度量…

2023年 1月 16日 0条评论 1413点热度 3人点赞 张飞的猪 阅读全文

规范设计在这里取《大数据之路:阿里巴巴大数据实践》中的定义,这里记录一下本人对这一块自己的理解。 规范定义指以维度建模作为理论基础 构建总线矩阵,划分和定义数据域、业务过程、维度、度量 原子指标、修饰类型、修饰词、时间周期、派生指标。 所谓的规范的定义,简单理解,如果把数据当作货物,那就是货物的分类,以及对应相关的属性,比如生产日期,某个原料的含量等,我们可以把相近或者相同货物,按照一定的规律,放在一起,方便入库与出库,需要某个货物按照这些规律就可以,以比较快的速度拉取出来。 一般的规范设计包含一下几个方面:划分和…

2023年 1月 9日 0条评论 1072点热度 1人点赞 张飞的猪 阅读全文

  目前主流的数据仓库分层大多为四层,也有五层的架构,这里介绍基本的四层架构。 分别为数据贴源层(ods)、数据仓库明细层(dw)、多维明细层(dws)和数据集市层(dm)。   下面是架构图:   数据分层的目的是:减少重复计算,避免烟囱式开发,节省计算资源,靠上层次,越对应用友好,也对用户友好,希望大部分(80%以上)的需求,都用DWS,DW的表来支持就行,所以ODS层数据不能被DM层任务引用,需要抽取数据到DW,或者DWS。   …

2023年 1月 4日 0条评论 1368点热度 1人点赞 张飞的猪 阅读全文

数据仓库主要有四种架构,Kimball的DW/BI架构、独立数据集市架构、辐射状企业信息工厂Inmon架构、混合Inmon与Kimball架构。不过不管是那种架构,基本上都会使用到维度建模。 Kimball的DW/BI架构,可以参考这篇文章 数据仓库(4)基于维度建模的KimBall架构。 独立数据集市架构,采用这种架构的数据仓库,数据以部门为基础来部署,不考虑企业级别的信息共享和集成。也就是各个部门各自按照需要,各自在数据源同步数据,按照各自的标准,对数据进行处理。这种实际上就是没有架构,会造成分析数据的冗余存储…

2023年 1月 3日 1条评论 1228点热度 3人点赞 张飞的猪 阅读全文